In a nutshell: Approximating solutions to systems of higher-order initial value problems

Given a system of m initial-value problems (IVP) where the $k^{\text {th }}$ IVP is an n_{k}-order IVP, then such a system can be converted into system of $n_{1}+\ldots+n_{m} 1^{\text {st }}$-order IVPs by generalizing the steps seen previously. This cannot be described mathematically without a lot of unnecessary notation, and thus, instead, we will give an example. Here is a system of two $2^{\text {nd }}$-order IVPs and a $3^{\text {rd }}$-order IVP.

$$
\begin{aligned}
x^{(2)}(t) & =f_{1}\left(t, x(t), x^{(1)}(t), y(t), y^{(1)}(t), z(t), z^{(1)}(t), z^{(2)}(t)\right) \\
y^{(2)}(t) & =f_{2}\left(t, x(t), x^{(1)}(t), y(t), y^{(1)}(t), z(t), z^{(1)}(t), z^{(2)}(t)\right) \\
z^{(3)}(t) & =f_{3}\left(t, x(t), x^{(1)}(t), y(t), y^{(1)}(t), z(t), z^{(1)}(t), z^{(2)}(t)\right) \\
x\left(t_{0}\right) & =x_{0} \\
x^{(1)}\left(t_{0}\right) & =x_{0}^{(1)} \\
y\left(t_{0}\right) & =y_{0} \\
y^{(1)}\left(t_{0}\right) & =y_{0}^{(1)} \\
z\left(t_{0}\right) & =z_{0} \\
z^{(1)}\left(t_{0}\right) & =z_{0}^{(1)} \\
z^{(2)}\left(t_{0}\right) & =z_{0}^{(2)}
\end{aligned}
$$

This can be written as the following system of seven IVPs:

$$
\mathbf{w}(t)=\left(\begin{array}{c}
w_{1}(t) \\
w_{2}(t) \\
w_{3}(t) \\
w_{4}(t) \\
w_{5}(t) \\
w_{6}(t) \\
w_{7}(t)
\end{array}\right)=\left(\begin{array}{c}
x(t) \\
x^{(1)}(t) \\
y(t) \\
y^{(1)}(t) \\
z(t) \\
z^{(1)}(t) \\
z^{(2)}(t)
\end{array}\right), \mathbf{w}^{(1)}(t)=\mathbf{f}(t, \mathbf{w}(t))=\left(\begin{array}{c}
w_{2}(t) \\
f_{1}\left(t, w_{1}(t), \ldots, w_{7}(t)\right) \\
w_{4}(t) \\
f_{2}\left(t, w_{1}(t), \ldots, w_{7}(t)\right) \\
w_{6}(t) \\
w_{7}(t) \\
f_{3}\left(t, w_{1}(t), \ldots, w_{7}(t)\right)
\end{array}\right), \text { and } \mathbf{w}\left(t_{0}\right)=\left(\begin{array}{c}
x_{0} \\
x_{0}^{(1)} \\
y_{0} \\
y_{0}^{(1)} \\
z_{0} \\
z_{0}^{(1)} \\
z_{0}^{(2)}
\end{array}\right)=\mathbf{w}_{0} .
$$

where we index \mathbf{w} from 1 to $7=2+2+3$. When we examine the approximation \mathbf{w}_{k}, the $1^{\text {st }}$ entry approximates $x\left(t_{k}\right)$, the $3^{\text {rd }}$ entry approximates $y\left(t_{k}\right)$, and the $5^{\text {th }}$ entry approximates $z\left(t_{k}\right)$. The approximations of the $2^{\text {nd }}, 4^{\text {th }}$, and $6^{\text {th }}$ entries can be used for the derivatives with respect to the splines used to find intermediate values.

